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Abstract
Behavior Cloning (BC) is a widely adopted visual
imitation learning method in robot manipulation.
Current BC approaches often enhance generaliza-
tion by leveraging large datasets and incorporating
additional visual and textual modalities to capture
more diverse information. However, these meth-
ods overlook whether the learned representations
contain redundant information and lack a solid
theoretical foundation to guide the learning pro-
cess. To address these limitations, we adopt an
information-theoretic perspective and introduce
mutual information to quantify and mitigate re-
dundancy in latent representations. Building on
this, we incorporate the Information Bottleneck
(IB) principle into BC, which extends the idea of
reducing redundancy by providing a structured
framework for compressing irrelevant informa-
tion while preserving task-relevant features. This
work presents the first comprehensive study on re-
dundancy in latent representations across various
methods, backbones, and experimental settings,
while extending the generalizability of the IB to
BC. Extensive experiments and analyses on the
CortexBench and LIBERO benchmarks demon-
strate significant performance improvements with
IB, underscoring the importance of reducing in-
put data redundancy and highlighting its practi-
cal value for more practical applications. Project
Page: BC-IB Website.

1. Introduction
Behavior Cloning (BC), one of the simplest and most widely
used methods in Imitation Learning (IL), learns a map-
ping from states to actions by training on state-action pairs
from expert demonstrations. BC has been widely stud-
ied in autonomous driving (Bain & Sammut, 1995; Torabi
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Figure 1: Policy architecture of BC. Current BC methods
(black arrows) do not impose restrictions on the latent rep-
resentations Z, potentially allowing redundant information
from the input representations X .

et al., 2018), robotics control (Argall et al., 2009) and game
AI (Pearce & Zhu, 2022). In robot manipulation, BC has be-
come a foundational approach, enabling robots to replicate
expert actions based on sensory inputs such as images or pro-
prioception information like gripper states. To enhance the
generalization of robots, most BC methods focus on incorpo-
rating large datasets of human or manipulation videos (Jang
et al., 2022; Karamcheti et al., 2023; Brohan et al., 2023;
Cheang et al., 2024; Saxena et al., 2025), or integrating
additional text and visual information (Jia et al., 2024; Wen
et al., 2024; Hu et al., 2024). While these methods have
made significant progress in improving generalization by
leveraging more diverse information, they often neglect a
critical aspect: whether the learned representations contain
significant redundant information.

Why do we need to explore this? Firstly, the inherent chal-
lenges of input data redundancy remain largely unexplored
in BC for robot manipulation, despite their potential to sig-
nificantly impact performance. Secondly, most existing
methods lack a solid theoretical foundation to guide the
learning process. Then, a key question arises: how can we
quantify the redundancy in inputs or representations, and
how can we effectively reduce it?

How to explore this? As illustrated in Figure 1, in BC, the
inputs are typically encoded into individual representations
and concatenated to form the input representation X . This is
then processed through a feature fusion module to produce
the latent representation Z, which is subsequently decoded

1

https://baishuanghao.github.io/BC-IB.github.io


to predict the action A. The policy is optimized by mini-
mizing the discrepancy between the predicted actions and
the expert-provided actions. In information theory, mutual
information between X and Z, denoted as I(X,Z), mea-
sures the amount of information gained about one random
variable by knowing the other. In BC, if output Y can be
well predicted by Z, reducing I(X,Z) means continuously
eliminating redundant information from X .

Taking a step further, an information-theoretic approach that
balances the trade-off between representation complexity
and predictive power offers a natural framework to address
the problem of latent representation redundancy and the
lack of a solid theoretical foundation, namely information
bottleneck (IB) principle (Tishby et al., 1999). IB regular-
izes the representation Z by minimizing the mutual infor-
mation I(X,Z) between X and Z, while maximizing the
mutual information I(Z,A) between Y and A. The first
term I(X,Z) represents the compression of the representa-
tion, where a smaller mutual information indicates a greater
degree of compression and redundancy reduction, while
I(Z,A) ensures predictive power is maintained.

Motivated by this information-theoretic approach, we make
the first attempt in this work to study the impact of latent
representation redundancy in BC for robot manipulation and
extend the IB method to this context, where redundancy in
latent representations is quantified by I(X,Z). We conduct
extensive experiments in various settings and analyses to val-
idate its effectiveness, highlighting the benefits of reducing
redundancy to enhance generalization in robotic tasks. Addi-
tionally, we provide detailed theoretical analyses, including
generalization error bounds, to validate its effectiveness.

How to apply IB to the BC architectures, and what are
its potential applications? To ensure the generality of our
findings, we categorize BC architectures based on their
feature fusion methods into two types: spatial fusion and
temporal fusion. This allows us to identify the applicable
scenarios for each fusion method, and by incorporating IB,
we uncover a series of interesting findings. Furthermore,
our experiments reveal that regardless of the pre-training
stage, the final fine-tuning phase, or the size of the dataset,
incorporating IB by reducing redundancy enables the model
to learn more robust features and improve performance,
suggesting its potential applicability in these scenarios.

Our contributions are three-fold. (1) We extend the IB to
BC and provide a comprehensive study on the impact of
latent representation redundancy in BC for robot manip-
ulation. (2) We empirically demonstrate that minimizing
redundancy in latent representations helps existing BC algo-
rithms significantly improve generalization performance on
the Cortexbench and LIBERO benchmarks across various
settings, indirectly highlighting the considerable redundancy
present in current robot trajectory datasets. (3) We provide

a detailed theoretical analysis explaining why IB enhances
the transferability of BC methods.

2. Related Work
2.1. Behavior Cloning in Robot Manipulation

Behavioral Cloning (BC), first introduced by (Pomerleau,
1991), is a well-known Imitation Learning (IL) algorithm
that learns a policy by directly minimizing the discrepancy
between the agent’s actions and those of the expert in the
demonstration data. To learn more generalizable representa-
tions, one class of visual representation learning methods
pre-train on large video datasets of robotics or humans,
enabling rapid application of the pre-trained encoder to
downstream robotic tasks. Notable examples include VC-
1 (Majumdar et al., 2023), R3M (Nair et al., 2023), and
Voltron (Karamcheti et al., 2023) . Meanwhile, another line
of research focuses on training on even more extensive and
diverse datasets with larger models, such as Internet-scale
visual question answering and robot trajectory data (Bro-
han et al., 2023), as well as a vast collection of Internet
videos (Cheang et al., 2024). Additionally, some methods
further enhance generalization by incorporating additional
sources of information. These include inferring textual
descriptions based on the robot’s current state (Zawalski
et al., 2024), leveraging visual trajectories (Wen et al., 2024)
and generated images (Tian et al., 2025), and integrating
3D visual information (Goyal et al., 2023). However, these
methods have not deeply analyzed the redundancy in learned
latent representations, and most also lack a solid theoretical
foundation. Thus we extend the Information Bottleneck (IB)
principle to BC, addressing this fundamental gap.

2.2. Information Bottleneck in Robotics

The Information Bottleneck (IB) principle was first pro-
posed in (Tishby et al., 1999) within the context of infor-
mation theory. Since then, it has been widely applied in
deep learning and various downstream tasks related to rep-
resentation learning, such as classification (Federici et al.,
2019), segmentation (Bardera et al., 2009; Lee et al., 2021),
and generative tasks (Jeon et al., 2021). In deep learning,
it was originally proposed to balance the trade-off between
the accuracy and complexity of the representation in super-
vised learning. In robotics learning, IB has found notable
applications in reinforcement learning, where some works
maximize the mutual information (MI) between the repre-
sentation and the dynamics or value function, while restrict-
ing the information to encourage the encoder to extract only
task-relevant features (Kim et al., 2019; Bai et al., 2021; He
et al., 2024). Different from prior works, we introduce IB
into Behavior Cloning (BC) to explore and experimentally
validate the redundancy in latent representations in robotics.
Additionally, we demonstrate its effectiveness through de-

2



tailed theoretical analyses.

3. Preliminary
3.1. Problem Setting of Behavior Cloning

BC can be formulated as the Markov Decision Process
(MDP) framework (Torabi et al., 2018), which is often de-
fined without an explicitly specified reward function, to
model sequential action generation problems. The concept
of rewards is replaced with supervised learning, and the
agent learns by mimicking expert actions. Formally, in
robot manipulation, the state at each timestep consists of
visual observations ot, the robot’s proprioceptive state st,
and optionally a language instruction l. Let xt = (ot, st, l)
represent the overall state. The policy π maps a sequence of
states to an action: ât = π(xt−τ :t), where τ indicates the
length of the state history. For simplicity, we set τ = 1. The
optimization process can be formulated as:

π∗ = argminπ E(xt,at)∼De
[L (π (xt) , at)] , (1)

where De is expert trajectory dataset and at is action labels.
In vanilla BC, L typically represents the mean squared error
(MSE) loss function for continuous action spaces, or cross-
entropy (CE) loss for discrete action spaces. In this study,
we adopt the continuous action spaces with MSE loss:

LBC = E(xt,at)∼De

[
∥π (xt)− at∥2

]
. (2)

Building on this vanilla BC loss, some methods also intro-
duce alignment loss (Jang et al., 2022; Ma et al., 2024) and
reconstruction loss (Radosavovic et al., 2023; Karamcheti
et al., 2023). However, in this study, to more clearly illus-
trate the relationship with representation redundancy, we
focus solely on the vanilla BC loss.

3.2. Mutual Information Neural Estimation

Estimating mutual information between variables directly is
challenging, thus we use Mutual Information Neural Estima-
tion (MINE) (Belghazi et al., 2018) to estimate it. MINE is
based on neural networks, which can efficiently handle high-
dimensional, continuous, discrete, and hybrid data types
without requiring assumptions about the underlying distri-
butions. MINE estimates mutual information by training a
classifier to differentiate between samples from the joint dis-
tribution PXZ and the product of the marginal distributions
PX ⊗ PZ of the random variables X and Z. MINE uses a
lower bound for mutual information based on the Donsker-
Varadhan representation (Donsker & Varadhan, 1983) of the
Kullback-Leibler (KL) divergence:

I(X;Z) := DKL(PXZ ||PX ⊗ PZ) ≥ Î(DV )
θ (X;Z)

:= EPXZ
[Tθ(x, z)]− logEPX⊗PZ

[
eTθ(x,z)

]
,

(3)

where Tθ : X ×Z → R is a discriminator function modeled
by a neural network with parameters θ. We empirically
sample from PXZ , and for PX⊗PZ , we shuffle the samples
from the joint distribution along the batch axis.

4. Pipeline of BC with IB
4.1. Model Architecture

Before introducing IB, we first need to define the input X
and latent representations Z. According to current methods
in BC for robot manipulation, as discussed in Section 3.1,
the input is typically multimodal, meaning it not only in-
cludes RGB images but may also incorporate the robot’s
proprioceptive state, language instructions, and more. Previ-
ous work has shown that proprioceptive states can lead to
overfitting (Wang et al., 2024). Additionally, for the sake
of convenience in visualizing I(X,Z), we do not treat the
image alone as X , as done in previous studies. Instead, we
use features extracted from all modalities through respective
feature extractors as our input X , i.e.,

xt = concat(Enco(ot),Encs(st),Encl(l)), (4)

where Enc(·) denotes the feature extractor of each modality.
Then, regarding how to process the input X , or how to fuse
information from multiple modalities into latent representa-
tions Z, we categorize the BC methods in robot manipula-
tion based on feature fusion methods into two types: spatial
fusion and temporal fusion.

As illustrated in Figure 2 b), spatial fusion involves ex-
tracting spatial features from data at a given time step or
concatenating features across multiple time steps along the
feature dimensions. This approach does not explicitly dif-
ferentiate between time steps but instead processes the ag-
gregated features as a whole, emphasizing the modeling
of inter-feature relationships. The spatial fusion module
can be implemented using Multi-Layer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs), Spatial Transform-
ers, or even simple concatenation operations. On the other
hand, as illustrated in Figure 2 c), temporal fusion integrates
input features by capturing dynamic relationships and de-
pendencies across time steps, enabling the modeling of both
long-term and short-term temporal dynamics in sequential
data. Temporal fusion modules can be implemented us-
ing Recurrent Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs), or Temporal Transformers.

The latent representation Z, which integrates both spatial
and temporal information, is then passed through a policy
head to generate actions. Existing policy heads primarily
focus on using MLP, Gaussian Mixture Model (GMM),
and diffusion-based policy (DP) heads (Chi et al., 2023;
Reuss et al., 2024). For simplicity and clearer empirical
demonstration, we use an MLP as the policy head.
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Figure 2: Model architectures used in this study. Based on feature fusion methods, we categorize the BC methods in robot
manipulation into two types: spatial fusion and temporal fusion. After extracting features from each modality a), spatial
fusion b) extracts spatial features at a given time step or concatenates features across multiple time steps using encoders like
MLPs or CNNs. Temporal Fusion c) fuses input features by modeling dynamic relationships and dependencies between time
steps using RNNs or Temporal Transformers. The latent representations are then decoded into actions via the policy head.

4.2. Behavior Cloning with Information Bottleneck

The Information Bottleneck (IB) principle is an information-
theoretic approach aimed at extracting the most relevant
information from an input variable X with respect to an
output variable, i.e., action A. The central idea is to find a
compressed representation Z of X that retains the relevant
information needed to predict A, while discarding irrelevant
parts of X that do not contribute to predicting A. The
relevant information is quantified as the mutual information
I(X;A), and the optimal representation Z is the minimal
sufficient statistic of X with respect to A. In practice, this
can be achieved by minimizing a Lagrangian that balances
the trade-off between retaining predictive information and
compressing the input, which can be formulated as:

L = βI(X;Z)− I(Z;A), (5)

where β is the Lagrange multiplier that balances the trade-
off between the compression ability and the predictive
power. Thus Equation (2) can be modified as:

LBC−IB = E(xt,at)∼De

[
βI(xt, zt) + ∥π(xt)− at∥2

]
,
(6)

where zt = F (xt) and F (·) denotes the fusion module.

4.3. Theoretical Analysis

We provide a theoretical analysis of our BC-IB objective
in Equation (5). Theorem 4.1 and Theorem 4.2 reveal that
the generalization error admits an upper bound governed
by the mutual information between the input and the latent
representation. By minimizing this mutual information, we
effectively tighten the upper bound, thereby improving the
model’s generalization performance. Theorem 4.3 eluci-
dates the optimization challenges associated with complex
input states. When the input O contains a large amount

of state information, as depicted in Figure 2, directly min-
imizing the mutual information between O and the latent
representation Z becomes computationally impractical. To
address this, the input O is first compressed into an interme-
diate embedding X via a fusion network f , and the mutual
information between X and Z is minimized instead. The
theorem establishes that, under certain conditions, this inter-
mediate approach can approximate the ideal optimization re-
sults, provided that the embedding X sufficiently preserves
the essential information from the original input O.

Theorem 4.1. Generalization Bound Adapted from
(Shwartz-Ziv et al., 2019). Let S = {(xt, at)}nt=1 denote
the training data sampled from the same distribution as the
random variable pair (X,A). Given the policy π trained
on S, the generalization error is given by:

∆(S) = EX,A[ℓ(π(X), A)]− 1

n

n∑
t=1

ℓ(π(xt), at). (7)

Using the Probably Approximately Correct (PAC) bound
framework and the Asymptotic Equipartition Property
(AEP) (Cover, 1999), with probability at least 1 − δ, the
following upper bound on the generalization error holds:

∆(S) ≤

√
2I(X;Z) + log 2

δ

2n
, (8)

where I(X;Z) represents the mutual information between
the input X and the intermediate representation Z, and
δ is the confidence level. Details of proof can be seen in
Appendix A of (Shwartz-Ziv et al., 2019).

Theorem 4.2. Generalization Bound Adapted from
(Kawaguchi et al., 2023). Let S = {(xt, at)}nt=1 denote
the training data sampled from the same distribution as the
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random variable pair (X,A). The generalization error is
approximately bounded by:

∆(S) ∝
√

I(X;Z | A) + I(ϕS ;S)

n
, (9)

where ϕS is the encoder mapping the input X to the inter-
mediate representation Z. This bound indicates that the
generalization error is:

• Positively correlated with I(X;Z | A), which captures
mutual information between the input X and the latent
representation Z, conditioned on the actions A. This
term reflects that the IB compresses X into Z while
preserving the relevant information for predicting A.

• Positively correlated with I(ϕS ;S), which reflects the
information content of the representation ϕ for the
given dataset S.

Theorem 4.3. Optimization Gap under Different Input Com-
pression. Let o → x → z form a Markov chain, where o is
transformed into x by a network f , and x is further trans-
formed into z by a network ϕ. Let ϕo = f ◦ ϕ. Define two
optimization problems:

(θε, ϕε
o) = argmin

θ,ϕo

EPϕo (o,x,z)

[
log

Pϕ(z|x)
Pϕ(z)

− 1

β
J(z; θ)

]
,

(10)

(θ⋆, ϕ⋆
o) = argmin

θ,ϕo

EPϕo (o,z)

[
log

Pϕo(z|o)
Pϕo

(z)
− 1

β
J(z; θ)

]
.

(11)

Let Jε = EPfε,ϕε (o,x,z)[J(z; θ
ε)], J⋆ =

EPϕ⋆
o
(o,z)[J(z; θ

⋆)].

Assume the mutual information gap satisfies the following,
for any δ have

I(o, z;ϕε
o)− I(o, z;ϕ∗

o) ≤
δ

β
. (12)

Then, the gap between the two optimizations is bounded as:

|J⋆ − Jε| ≤ δ. (13)

The detailed proof can be found in Appendix A.

5. Experiments
5.1. Embodied Evaluation

Benchmarks. We mainly evaluate BC with IB across
two benchmarks, CortexBench (Majumdar et al., 2023)
and LIBERO (Liu et al., 2024). CortexBench is a single-
task benchmark. For validation, we selected four imita-
tion learning-related simulators, encompassing a total of

14 tasks: Adroit (2 tasks) (Rajeswaran et al., 2018), Meta-
World (5 tasks) (Yu et al., 2020), DMControl (5 tasks) (Tassa
et al., 2018), and TriFinger (2 tasks) (Wuthrich et al., 2021).
During evaluation, the number of validation trajectories
is set to 25, 10, 25, and 25, respectively. LIBERO is a
language-conditioned multi-task benchmark. For evaluation,
we select four suites: LIBERO-Goal (10 tasks), LIBERO-
Object (10 tasks), LIBERO-Spatial (10 tasks), and LIBERO-
Long (10 tasks), each focusing on the controlled transfer of
knowledge related to task goals, objects, spatial information,
and long-horizon tasks, respectively. During evaluation, the
number of validation trajectories is set to 20.

Baselines. In CortexBench, we evaluate four representation
learning models: R3M (Nair et al., 2023), Voltron (Karam-
cheti et al., 2023), VC-1 (Majumdar et al., 2023), and
MPI (Zeng et al., 2024). In line with the original papers,
we use the pre-trained versions of these models to facilitate
their application to downstream tasks, keeping the image
encoders frozen. Additionally, we introduce two full fine-
tuning baselines by replacing these encoders with part of
uninitialized ResNet-18 (He et al., 2016) and ViT-S (Doso-
vitskiy, 2021), denoted as ResNet and ViT, respectively. All
methods employ the two fusion techniques described in Sec-
tion 4.1. For spatial fusion, we use an MLP, and for temporal
fusion, we utilize a Temporal Transformer. In LIBERO, we
implement four vision-language policy networks. One of
them uses a spatial fusion approach, which employs ResNet
as the image encoder and an MLP as the fusion module,
referred to as BC-MLP. The other three use temporal fusion.
Following the original paper, we rename them based on
the combination of the image encoder and fusion module:
BC-RNN, BC-Transformer, and BC-VILT (Liu et al., 2024).
The policy head for all methods is fixed as an MLP. Notably,
all baselines with IB are referred to as BC+IB.

Implementation. In CortexBench, for four partial fine-
tuning methods, we train for 100 epochs on each task using
the Adam optimizer with a learning rate of 1e-3, a batch size
of 512, and weight decay of 1e-4, with learning rate decay
applied using a cosine annealing schedule. For the two full
fine-tuning methods, we train for 50 epochs with a learning
rate of 1e-4 and a batch size of 256. All other parameters
remain unchanged. In LIBERO, we train for 50 epochs
using the AdamW optimizer with a learning rate of 1e-4
and a batch size of 64, decayed using a cosine annealing
schedule. For BC+IB methods, the model used in MINE
consists of a two-layer MLP, with a learning rate of 1e-5.
The Lagrange multiplier in Equation (6) ranges from 1e-4
to 5e-3 in this work.

Model Selection. For single-task benchmark CortexBench,
we test the model every 5 or 10 epochs and select the model
with the highest success rate. For multi-task benchmark
LIBERO, we select the model from the final epoch.
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The appendix will provide detailed descriptions of each
benchmark (Appendix B.1), all baselines (Appendix B.2),
implementation details (Appendix B.3), and the rationale
behind the model selection (Appendix B.4).

5.2. Performance on Cortexbench

The Selection of Fusion Method. We first evaluate the
effectiveness of the two fusion methods in the baselines on
CortexBench, with the results shown in Figure 3.

Finding 1: For simple single-task scenarios, spatial fusion
is more efficient and effective than temporal fusion. As
shown in Figure 3 b), the performance of methods with
temporal fusion drops significantly. From Figure 3 a), this
can be attributed to the slower loss reduction in methods
using temporal fusion, which results in higher loss at the
same training epoch. Therefore, we focus exclusively on
presenting the results for methods employing spatial fusion.

Results. We next report the performance, i.e., success rate,
of the baselines and baselines with IB on the single-task
benchmark CortexBench in Table 1 with a full-shot setting.
Based on results, we derive the following findings.

Finding 2: Whether using full fine-tuning or partial fine-
tuning, all vanilla BC methods with different visual back-
bones incorporating IB outperform their vanilla counterparts
across the board. In some benchmarks, the improvements
are substantial. For example, ResNet with IB achieves
a 10.01% improvement on DMControl, and VC-1 with
IB shows a 4.80% improvement on Meta-World. In Ap-
pendix C.1, we report the success rate for each task, where
significant improvements can be observed in certain tasks.

Finding 3: Finding 2 implicitly suggests that the latent rep-
resentation Z derived from input X is redundant. Therefore,
compressing information from input is essential, which can
further enhance performance.

Finding 4: For simple single-task downstream tasks, full
fine-tuning of a simple, uninitialized model (ResNet) is
sufficient and may even outperform a pre-trained larger
model. However, the latter is more efficient for faster fine-
tuning and deployment, and proves to be more effective for
more complex tasks (Burns et al., 2023).

5.3. Performance on LIBERO

Results. We report the performance on the multi-task bench-
mark LIBERO with a full-shot setting in Table 2.

Finding 5: For more complex language-conditioned multi-
task scenarios, all baselines with different backbones incor-
porating IB consistently show performance improvements
across all LIBERO benchmarks. For example, BC-VILT
achieves large gains of 7.66% and 9.00% on LIBERO-Goal
and LIBERO-Object, respectively, while BC-RNN shows a

24.27

35.02
40.80

35.73

a) BC loss comparison for the two fusion methods

b) Success rate comparison for the two fusion methods

X 10

~ 0.0056

~ 0.0005

Figure 3: a) BC loss variation for ResNet in spatial and
temporal fusion methods on the bin-picking task of the
Meta-World. b) Averaged success rates of ResNet and VC1
in spatial and temporal fusion methods across the Meta-
World and DMControl.

significant improvement of 10.83% on LIBERO-Goal. IB
proves to be more effective in more complex environments
and settings. We attribute this to the difference in task com-
plexity: in CortexBench, the history length is 3, while in
LIBERO, it is 10, with LIBERO being a multi-task bench-
mark and CortexBench being single-task benchmark. The
increased data complexity (task quantity and input informa-
tion) suggests a higher level of data redundancy, making IB
even more effective.

Finding 6: We observe that in complex multi-task scenarios
with more intricate inputs, such as a greater number of input
modalities and extended historical information, using the
Temporal Transformer in temporal fusion proves to be more
effective than both spatial fusion and RNN-based temporal
fusion. The evidence lies in the fact that the average success
rates of BC-Transfomer and BC-VILT are over 30% higher
than those of BC-MLP and BC-RNN. This is likely because
Temporal Transformers excel in handling long-range inter-
actions and capture dynamic dependencies across time steps,
where RNNs and spatial fusion methods may struggle. This
finding, together with Finding 1, underscores the specific
scenarios in which each fusion method is most applicable.
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Table 1: Performance in spatial fusion on single-task benchmark CortexBench. We evaluated 14 tasks across 4 benchmarks
using 3 random seeds and reported the average success rate along with the standard deviation. ∗ denotes the use of only a
small portion of the original model for feature extraction. The best performance is highlighted in bold.

Method Image Encoder Adroit Meta-World DMControl TriFinger Avg

Full Fine-tuning

ResNet (He et al., 2016) ResNet∗ 66.00±5.29 81.07±1.22 74.93±6.21 71.59±0.88 73.40
ResNet+IB 72.00±2.00 83.20±0.80 84.94±3.54 72.30±1.76 78.11

ViT (Dosovitskiy, 2021) ViT∗ 35.33±3.06 31.73±1.67 10.41±1.21 55.57±2.65 33.26
ViT+IB 37.33±4.16 36.00±6.97 12.53±2.17 55.93±2.16 35.45

Partial Fine-tuning

R3M (Nair et al., 2023) ViT-S 25.33±6.43 53.07±1.67 40.31±0.65 59.87±0.78 44.65
R3M+IB 27.33±3.06 54.13±2.44 41.74±5.54 60.63±0.53 45.96

Voltron (Karamcheti et al., 2023) ViT-S 18.67±6.11 72.53±1.22 25.35±2.81 74.21±2.61 47.69
Voltron+IB 21.33±5.77 74.40±3.49 33.16±6.70 75.12±2.47 51.00

VC-1 (Majumdar et al., 2023) ViT-B 24.67±7.02 77.60±2.88 53.82±5.03 72.05±2.17 57.04
VC-1+IB 26.00±9.17 82.40±2.88 54.93±1.11 73.80±1.27 59.28

MPI (Zeng et al., 2024) ViT-S 34.67±4.16 66.40±2.12 59.45±1.91 61.91±0.57 55.61
MPI+IB 36.67±6.11 69.33±1.67 61.41±3.15 63.34±1.52 57.69

Table 2: Performance on language-condition multi-task benchmark LIBERO. We evaluated 40 tasks of 4 suites using 3
random seeds and reported the average success rate along with the standard deviation. S-Trans. denotes Spatial Transformer
and T-Trans. denotes Temporal Transformer. The best performance is bolded.

Method Image
Encoder

Fuse
Module

LIBERO-
Goal

LIBERO-
Object

LIBERO-
Spatial

LIBERO-
Long Avg

BC-MLP ResNet MLP 16.50±3.97 19.00±12.22 29.33±9.61 2.33±0.76 16.79
BC-MLP+IB 27.67±12.00 31.50±10.83 41.00±8.32 2.67±0.76 25.71

BC-RNN ResNet RNN 15.17±10.91 13.33±7.91 30.67±13.34 2.33±0.67 15.38
BC-RNN+IB 26.00±3.50 17.67±5.77 35.17±9.45 3.00±0.17 20.46

BC-Trans. ResNet T-Trans. 67.83±10.42 41.83±1.89 68.00±1.00 15.83±2.52 48.37
BC-Trans.+IB 74.17±5.75 45.67±4.31 72.50±10.26 18.00±6.38 52.59

BC-VILT S-Trans. T-Trans. 76.17±3.01 43.00±3.91 67.17±2.25 6.50±0.87 48.21
BC+VILT+IB 83.83±3.40 52.00±3.04 70.67±2.52 8.67±1.53 53.79

Finding 7: IB is particularly effective for tasks requiring
diverse feature extraction, such as distinguishing distinct
task objectives or differentiating between various objects,
as in LIBERO-Goal and LIBERO-Object. By filtering out
irrelevant information, IB facilitates better generalization
and more compact representations. However, its impact
is less pronounced in spatial and long-horizon tasks, such
as LIBERO-Spatial and LIBERO-Long, which heavily de-
pend on structural and sequential dependencies that may be
disrupted by excessive compression.

5.4. More Analysis

Effect of the Lagrange multiplier β of Equation (6). This
experiment evaluates how incorporating IB enhances perfor-
mance. Since the MINE model’s parameters are fixed, the
key difference between BC+IB and BC lies in the parameter

β, which balances compression and predictive power. For
LIBERO experiments, β is explored within 1e-4, 1e-3, 5e-3,
1e-2. Finding 8: As shown in Figure 5, IB improves per-
formance within a specific β range, with a peak observed at
an undetermined value. However, across all experiments, β
around 1e-4 consistently yields stable improvements. The
selected β values for each experiment are detailed in C.1.

Effect of the Number of Demonstrations. We evaluate
IB’s effectiveness in few-shot settings, as few-shot learning
is crucial for fine-tuning on domain-specific tasks in real-
world applications. Finding 9: As shown in Figure 6, IB
significantly improves performance even with limited data,
highlighting its effectiveness in real-world scenarios where
data is scarce. This further underscores the potential of IB
in improving model generalization in practical settings.

Visualizations of I(X,Z). As shown in Figure 4, BC+IB
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sr of BC sr of BC+IB 𝐼𝐼(𝑋𝑋,𝑍𝑍) of BC 𝐼𝐼(𝑋𝑋,𝑍𝑍) of BC+IB

LIBERO-Goal LIBERO-Object LIBERO-Spatial LIBERO-Long

Figure 4: Comparison of vanilla BC and BC+IB on the LIBERO benchmark in terms of success rate (sr) and mutual
information. BC-VILT is denoted as BC. BC+IB consistently achieves lower I(X,Z) and higher success rates.

Figure 5: Effect of the Lagrange multiplier β in BC-
VILT+IB across three suites of LIBERO. When β=0, the
method reduces to vanilla BC-VILT.

achieves a greater reduction in I(X,Z) compared to vanilla
BC, leading to significant performance improvements and
further validating the effectiveness of IB. For instance, in
LIBERO-Goal, incorporating IB reduces I(X,Z) to one-
quarter of its original value, resulting in a 7.7% increase in
success rate.

We provide real-world experiments in Appendix C.2.

6. Limitations and Discussion
While our work provides extensive experimental validation
of the effectiveness of IB and the necessity of input redun-
dancy reduction in robotics representation learning, several
limitations remain. First, for scalability, we do not incorpo-
rate large models like vision-language-action models due to
high computational and time costs. Consequently, architec-
tures like RT-2 (Brohan et al., 2023) and OpenVLA (Kim
et al., 2024), which forgo a policy head and treat actions as
text tokens, have not been explored. This is an avenue we
aim to investigate in future work. Second, we have not exam-
ined alternative policy heads, such as diffusion-based (Chi

Figure 6: Comparison of the success rates of BC-VILT+IB
trained with 1, 5, 10, and 20 demonstrations against the
vanilla BC-VILT in the LIBERO-Goal suite.

et al., 2023) or transformer-based policy heads (Octo Model
Team et al., 2024), which may further enhance performance.
Third, while we evaluate our method on controlled bench-
marks, its robustness to domain shifts, such as environmen-
tal or task variations, remains underexplored. We hope
our work will inspire future research and contribute to the
ongoing development and refinement of these methods.

7. Conclusions
In this study, we investigated the redundancy in represen-
tations for Behavior Cloning in robot manipulation and
introduced the Information Bottleneck principle to mitigate
this issue. By incorporating IB, we aimed to filter out redun-
dant information in latent representations while preserving
task-relevant features. Extensive experiments across vari-
ous representation learning methods on CortexBench and
LIBERO revealed insightful findings and demonstrated that
IB significantly improves performance across diverse tasks
and architectures. We hope our work will inspire further
integration of information-theoretic principles into robotics
and foster deeper theoretical analysis in this domain.
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Federici, M., Dutta, A., Forré, P., Kushman, N., and Akata,
Z. Learning robust representations via multi-view in-
formation bottleneck. In International Conference on
Learning Representations, 2019.

Goyal, A., Xu, J., Guo, Y., Blukis, V., Chao, Y.-W., and
Fox, D. Rvt: Robotic view transformer for 3d object
manipulation. In Conference on Robot Learning, pp. 694–
710. PMLR, 2023.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari,
A., Girdhar, R., Hamburger, J., Jiang, H., Liu, M., Liu,
X., et al. Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
18995–19012, 2022.

He, H., Wu, P., Bai, C., Lai, H., Wang, L., Pan, L., Hu,
X., and Zhang, W. Bridging the sim-to-real gap from
the information bottleneck perspective. In 8th Annual
Conference on Robot Learning, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Hu, Y., Guo, Y., Wang, P., Chen, X., Wang, Y.-J., Zhang,
J., Sreenath, K., Lu, C., and Chen, J. Video prediction
policy: A generalist robot policy with predictive visual
representations. arXiv preprint arXiv:2412.14803, 2024.

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F.,
Lynch, C., Levine, S., and Finn, C. Bc-z: Zero-shot
task generalization with robotic imitation learning. In
Conference on Robot Learning, pp. 991–1002. PMLR,
2022.

Jeon, I., Lee, W., Pyeon, M., and Kim, G. Ib-gan: Disentan-
gled representation learning with information bottleneck

9



generative adversarial networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pp.
7926–7934, 2021.

Jia, Z., Thumuluri, V., Liu, F., Chen, L., Huang, Z., and
Su, H. Chain-of-thought predictive control. In Forty-first
International Conference on Machine Learning, 2024.

Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C.,
Sadigh, D., and Liang, P. Language-driven representation
learning for robotics. In Robotics: Science and Systems,
2023.

Kawaguchi, K., Deng, Z., Ji, X., and Huang, J. How does
information bottleneck help deep learning? In Inter-
national Conference on Machine Learning, pp. 16049–
16096. PMLR, 2023.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakr-
ishna, A., Nair, S., Rafailov, R., Foster, E., Lam, G., San-
keti, P., et al. Openvla: An open-source vision-language-
action model. arXiv preprint arXiv:2406.09246, 2024.

Kim, Y., Nam, W., Kim, H., Kim, J.-H., and Kim, G.
Curiosity-bottleneck: Exploration by distilling task-
specific novelty. In International conference on machine
learning, pp. 3379–3388. PMLR, 2019.

Lee, J., Choi, J., Mok, J., and Yoon, S. Reducing informa-
tion bottleneck for weakly supervised semantic segmenta-
tion. Advances in neural information processing systems,
34:27408–27421, 2021.

Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., and
Stone, P. Libero: Benchmarking knowledge transfer for
lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ma, T., Zhou, J., Wang, Z., Qiu, R., and Liang, J. Con-
trastive imitation learning for language-guided multi-task
robotic manipulation. 2024.

Majumdar, A., Yadav, K., Arnaud, S., Ma, J., Chen, C.,
Silwal, S., Jain, A., Berges, V.-P., Wu, T., Vakil, J., et al.
Where are we in the search for an artificial visual cortex
for embodied intelligence? Advances in Neural Informa-
tion Processing Systems, 36:655–677, 2023.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. In Conference on Robot Learning, pp. 892–
909. PMLR, 2023.

Octo Model Team, Ghosh, D., Walke, H., Pertsch, K., Black,
K., Mees, O., Dasari, S., Hejna, J., Xu, C., Luo, J.,
Kreiman, T., Tan, Y., Sanketi, P., Vuong, Q., Xiao, T.,
Sadigh, D., Finn, C., and Levine, S. Octo: An open-
source generalist robot policy. 2024.

Pearce, T. and Zhu, J. Counter-strike deathmatch with large-
scale behavioural cloning. In 2022 IEEE Conference on
Games (CoG), pp. 104–111. IEEE, 2022.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general con-
ditioning layer. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural computation,
3(1):88–97, 1991.

Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J.,
and Darrell, T. Real-world robot learning with masked
visual pre-training. In Conference on Robot Learning, pp.
416–426. PMLR, 2023.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learn-
ing and demonstrations. Robotics: Science and Systems,
2018.
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A. Proof of Theorem 4.3
Proof. The first optimization problem optimizes I(x, z), which imposes a looser constraint on I(o, z), as it does not directly
regulate the information flow from o to z. In contrast, the second optimization problem directly constrains I(o, z), which
may result in a smaller I(o, z;ϕ⋆

o). Therefore, we have:

I(o, z;ϕε
o) ≥ I(o, z;ϕ⋆

o). (14)

From the optimization objectives of the two problems, it follows that:

I(o, z;ϕε
o)−

1

β
Jε ≥ I(o, z;ϕ⋆

o)−
1

β
J⋆. (15)

Rearranging this inequality gives:
|Jε − J⋆| ≤ β · (I(o, z;ϕε

o)− I(o, z;ϕ⋆
o)) . (16)

According to the assumption that the mutual information gap is bounded:

I(o, z;ϕε
o)− I(o, z;ϕ⋆

o) ≤
δ

β
, (17)

we substitute this bound into the inequality:

|Jε − J⋆| ≤ β · δ
β

= δ. (18)

Thus, the performance gap is bounded as:
|J⋆ − Jε| ≤ δ. (19)

This completes the proof.

B. Details of Experiment Setting
B.1. Details of Benchmarks

B.1.1. CORTEXBENCH

We provide a detailed overview of the four imitation learning benchmarks used in CortexBench (Majumdar et al., 2023).
CortexBench is a single-task benchmark that includes 7 selected simulators, collectively offering 17 different embodied AI
tasks spanning locomotion, navigation, and both dexterous and mobile manipulation. Three of the simulators are related to
reinforcement learning, and thus are excluded from our analysis. The remaining four simulators, with a total of 14 tasks, are
retained for validation: Adroit (2 tasks) (Rajeswaran et al., 2018), Meta-World (5 tasks) (Yu et al., 2020), DMControl (5
tasks) (Tassa et al., 2018), and TriFinger (2 tasks) (Wuthrich et al., 2021).

First, Adroit (Rajeswaran et al., 2018) is a suite of dexterous manipulation tasks in which an agent controls a 28-DoF
anthropomorphic hand. It includes two of the most challenging tasks: Relocate and Reorient-Pen. In these tasks, the agent
must manipulate an object to achieve a specified goal position and orientation. Each task consists of 100 demonstrations.

Second, MetaWorld (Yu et al., 2020) is a collection of tasks in which agents command a Sawyer robot arm to manipulate
objects in a tabletop environment. CortexBench includes five tasks from MetaWorld: Assembly, Bin-Picking, Button-Press,
Drawer-Open, and Hammer. Each task consists of 25 demonstrations.

Third, DeepMind Control (DMControl) (Tassa et al., 2018) is a widely studied image-based continuous control benchmark,
where agents perform locomotion and object manipulation tasks. CortexBench includes five DMC tasks: Finger-Spin,
Reacher-Hard, Cheetah-Run, Walker-Stand, and Walker-Walk. Each task consists of 100 demonstrations.

Lastly, TriFinger (TF) (Wuthrich et al., 2021) is a robot consisting of a three-finger hand with 3-DoF per finger. CortexBench
includes two tasks from TriFinger: Push-Cube and Reach-Cube. Each task consists of 100 demonstrations.

Although only Meta-World is strictly a robot manipulation benchmark, we include all tasks to demonstrate the effectiveness
of IB comprehensively. We provide visualizations for one task from each benchmark, as shown in Figure 7.
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a) Relocate task in Adroit of CortexBench

c) Bin picking task in Meta-World of Cortexbench d) Move cube task in Trifinger of CortexBench

b) Walker stand task in DMControl of CortexBench

Figure 7: Visualizations for one task from each suite in CortexBench.

a) Open the middle drawer of the cabinet task 
in LIBERO-Goal

c) Pick up the black bowl on the stove and place it 
on the plate task in in LIBERO-Spatial 

d) Turn on the stove and put the moka pot on it task
in LIBERO-Long

b) Pick up the butter and place it in the basket 
in LIBERO-Object

Figure 8: Visualizations for one task from each suite in LIBERO.

B.1.2. LIEBRO

LIBERO is a language-conditioned multi-task benchmark comprising 130 tasks across five suites. LIBERO (Liu et al., 2024)
has four task suites: LIBERO-Goal (10 tasks), LIBERO-Object (10 tasks), LIBERO-Spatial (10 tasks), and LIBERO-100
(100 tasks).

LIBERO-Goal tasks share the same objects with fixed spatial relationships but differ in task goals, requiring the robot to
continually acquire new knowledge about motions and behaviors. Examples include (1) opening the middle drawer of the
cabinet, (2) opening the top drawer and placing the bowl inside, (3) pushing the plate to the front of the stove, (4) placing
the bowl on the plate, (5) placing the bowl on the stove, (6) placing the bowl on top of the cabinet, (7) placing the cream
cheese in the bowl, (8) placing the wine bottle on the rack, (9) placing the wine bottle on top of the cabinet, and (10) turning
on the stove.

LIBERO-Object tasks involve the robot picking and placing unique objects, requiring it to continually learn and memorize
new object types. Examples include (1) picking up the alphabet soup and placing it in the basket, (2) picking up the BBQ
sauce and placing it in the basket, (3) picking up the butter and placing it in the basket, (4) picking up the chocolate pudding
and placing it in the basket, (5) picking up the cream cheese and placing it in the basket, (6) picking up the ketchup and
placing it in the basket, (7) picking up the milk and placing it in the basket, (8) picking up the orange juice and placing it in
the basket, (9) picking up the salad dressing and placing it in the basket, and (10) picking up the tomato sauce and placing it
in the basket.

LIBERO-Spatial requires the robot to place a bowl, selected from the same set of objects, onto a plate. The robot must
continually learn and memorize new spatial relationships. Examples include (1) picking up the black bowl between the plate
and the ramekin and placing it on the plate, (2) picking up the black bowl from the table center and placing it on the plate,
(3) picking up the black bowl in the top drawer of the wooden cabinet and placing it on the plate, (4) picking up the black
bowl next to the cookie box and placing it on the plate, (5) picking up the black bowl next to the plate and placing it on the
plate, (6) picking up the black bowl next to the ramekin and placing it on the plate, (7) picking up the black bowl on the
cookie box and placing it on the plate, (8) picking up the black bowl on the ramekin and placing it on the plate, (9) picking
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up the black bowl on the stove and placing it on the plate, and (10) picking up the black bowl on the wooden cabinet and
placing it on the plate.

LIBERO-100 consists of 100 tasks involving diverse object interactions and versatile motor skills. It can be divided into
LIBERO-10 (10 tasks) and LIBERO-90 (90 tasks), where we use LIBERO-10, also referred to as LIBERO-Long, as our
benchmark. LIBERO-Long requires the robot to learn long-horizon tasks, demanding it to plan and execute actions over
extended periods to accomplish complex objectives. Examples include (1) turning on the stove and placing the moka pot on
it, (2) putting the black bowl in the bottom drawer of the cabinet and closing it, (3) putting the yellow and white mug in the
microwave and closing it, (4) putting both moka pots on the stove, (5) putting both the alphabet soup and the cream cheese
box in the basket, (6) putting both the alphabet soup and the tomato sauce in the basket, (7) putting the cream cheese box
and the butter in the basket, (8) putting the white mug on the left plate and the yellow and white mug on the right plate, (9)
putting the white mug on the plate and the chocolate pudding to the right of the plate, and (10) picking up the book and
placing it in the back compartment of the caddy.

We provide visualizations for one task from each suite, as shown in Figure 8.

B.2. Details of Baselines

B.2.1. BASELINES IN CORTEXBENCH

In CortexBench, the classification of baselines is primarily based on the visual encoder used.

For full fine-tuning baselines, ResNet (He et al., 2016) and ViT (Dosovitskiy, 2021) are baselines built from the original
ResNet-18 and ViT-S models, using only a portion of their architecture and with uninitialized parameters.

For partial fine-tuning baselines, R3M (Nair et al., 2023) pre-trains a ResNet model on human videos (Grauman et al., 2022)
using time contrastive learning and video-language alignment. For direct comparison, we use the version reproduced with
ViT. VC-1 (Majumdar et al., 2023) pre-trains a ViT using Masked Auto-Encoding (MAE) (He et al., 2022) on a mix of
human-object interaction videos, navigation, and the ImageNet (Deng et al., 2009) datasets. Voltron (Karamcheti et al.,
2023), a framework for language-driven representation learning from human videos and associated captions, pre-trains a
ViT using MAE. MPI (Zeng et al., 2024), a framework for interaction-oriented representation learning, directs the model
to predict transition frames and detect manipulated objects using keyframes as input. It learns from human videos and
associated captions.

If a proprioceptive state is available, it is first transformed into embeddings using a linear layer. Depending on the fusion
method, these embeddings are then combined with the visual embeddings. For spatial fusion, an MLP is used, while for
temporal fusion, a temporal transformer is employed. The fused features are ultimately processed through an MLP-based
policy head to generate actions.

B.2.2. BASELINES IN LEBERO

Similar to previous work (Zhu et al., 2024), the baselines in LIBERO largely follow the three architectures outlined in the
original paper (Liu et al., 2024), which we have renamed as BC-RNN, BC-Transformer, and BC-VILT. These three baselines
are part of the temporal fusion methods.

BC-RNN uses a ResNet as the visual backbone to encode per-step visual observations, with an LSTM as the temporal
backbone to process a sequence of encoded visual information. The language instruction is incorporated into the ResNet
features using the FiLM method (Perez et al., 2018), and is added to the LSTM inputs.

BC-Transformer employs a similar ResNet-based visual backbone but instead uses a transformer decoder (Vaswani, 2017)
as the temporal backbone to process outputs from ResNet, which are temporal sequences of visual tokens. The language
embedding is treated as a separate token alongside the visual tokens in the input to the transformer.

BC-VILT utilizes a ViT as the visual backbone and a transformer decoder as the temporal backbone. The language
embedding is treated as a separate token in the inputs of both the ViT and the transformer decoder. All temporal backbones
output a latent vector at each decision-making step.

Additionally, we introduce a spatial fusion method, BC-MLP, which uses a similar ResNet-based visual backbone. The
visual and language embeddings are directly concatenated and input into an MLP for fusion. After feature fusion, all
methods use an MLP-based policy head to generate actions.
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Table 3: Training hyperparameters of all (full | partial) fine-
tuning baselines in CortexBench.

Hyperparameters Training

epoch 50 | 100
batch size 256 | 512
optimizer AdamW

learning rate 1e-4 | 1e-3
weight decay 1e-4
lr scheduler Cosine
lr warm up 0
clip grad 100

augmentation Resize, CenterCrop, Normalize
history length 3

Table 4: Training hyperparameters of all baselines in
LIBERO.

Hyperparameters Training

epoch 50
batch size 64
optimizer AdamW

learning rate 1e-4
weight decay 1e-4
lr scheduler Cosine
lr warm up 0
clip grad 100

augmentation Normalize, ColorJitter
history length 10

Table 5: IB-related Hyperparameters of all baselines in both CortexBench and LIBERO.

IB-related Hyperparameters Training

MINE model

architecture 4-layer MLP
hidden size 512
output size 1
optimizer Adam

learning rate 1e-5
loss weight 0.1

IB loss

Lagrange multiplier β [1e-4, 5e-3]

B.3. Details of Implementations

For all experiments, we use a single Nvidia V100 GPU (CUDA 11.3) with 12 CPUs for training and evaluation.

B.3.1. CORTEXBENCH

We largely adhere to the original parameter settings from the CortexBench paper (Majumdar et al., 2023). For both full
fine-tuning and partial fine-tuning methods, as shown in Table 3, training parameters are presented with full fine-tuning
on the left and partial fine-tuning on the right. For model architecture parameters, spatial fusion employs a 4-layer MLP,
where the input dimension matches the output dimension of the image encoder. The features are first downsampled and then
upsampled to maintain consistency with the input dimension. For temporal fusion, each modality’s feature dimension is first
projected to 64, then processed through a four-layer, six-head Transformer. For dataset configurations, we adopt a full-shot
setting, training with 100 demonstrations for Adroit, 100 for DMControl, 25 for MetaWorld, and 100 for TriFinger. During
evaluation, we assess performance using 25, 10, 25, and 25 test trajectories, respectively.

B.3.2. LIBERO

We largely follow the original parameter settings from the LIBERO paper (Liu et al., 2024). The training parameters are
provided in Table 4. Regarding model architecture, Appendix A.1 of the original LIBERO paper (Liu et al., 2024) describes
the model parameters for BC-RNN, BC-Transformer, and BC-VILT. Here, we present the model parameters for BC-MLP,
which shares the same architecture as BC-Transformer except for the fusion module. Specifically, BC-MLP employs a
four-layer MLP with a hidden size of 256 as its fusion module. For dataset configurations, in the full-shot setting, we
use five demonstrations for evaluation, leaving the remaining 45 for training, which is considered the full-shot setting in
our experiments. However, full-shot training typically refers to utilizing all 50 demonstrations without allocating any for
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a) Success rate of VC-1 in Assembly task of Meta-World b) Averaged Success rate of BC-Transformer in LIBERO-Goal

Figure 9: Comparison of success rate curves between single-task and multi-task training.

evaluation, as robotic systems can operate without separate validation data.

For BC+IB, all training and model parameters remain identical to those of BC, except for the IB-specific parameters. The
details of IB-related parameters are provided in Table 5, while the specific values of the Lagrange multiplier are thoroughly
discussed in Appendix C.1.

B.4. Details of Model Selection

B.4.1. CORTEXBENCH

In the single-task dataset CortexBench, we observed that the learning curves of certain tasks exhibit significant oscillations,
such as the assemble task in MetaWorld, as shown in Figure 9 a). Previous studies often record performance at intervals of
many epochs or steps, selecting either the highest value (Majumdar et al., 2023) or the average of multiple peak values (Ze
et al., 2024). Following (Majumdar et al., 2023), we directly use the highest value to explore the model’s full potential on
the given task.

B.4.2. LIBERO

For the multi-task dataset LIBERO, we observed that while the learning curve for individual tasks may still oscillate, a
decrease in success rate for one task is often accompanied by an increase for another. This trade-off results in smoother
overall learning curves across multiple tasks, as shown in Figure 9 b). To make model selection more practical and
representative, we directly select the model from the final epoch.

C. Additional Experiment Results
C.1. Details of Simulation Experiments

We provide the task-wise results and corresponding β values for CortexBench. The results for Adroit and TriFinger in Table 6,
DMControl in Table 7, and MetaWorld are shown in Table 8. Across almost all tasks in CortexBench, incorporating the IB
consistently improves performance compared to vanilla BC methods. Notably, models such as ResNet+IB, VC-1+IB, and
MPI+IB often achieve the highest success rates, demonstrating the benefits of redundancy reduction in latent representations.
In most cases, properly tuning β (e.g., selecting values in the range of 1e-4 to 5e-3) leads to noticeable improvements.

We also provide the corresponding β values for LIBERO in Table 9. Across all suites in LIBERO, incorporating the IB
consistently improves performance over vanilla BC methods. The chosen values of β (e.g., 1e-4 to 5e-3) effectively balance
compression and predictive power.
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Table 6: Task-wise Performance on Adroit and Trifinger of CortexBench. We evaluated 4 tasks of 2 benchmarks using 3
random seeds and reported the average success rate (sr) and Lagrange multiplier β. The best performance is bolded.

Adroit TriFinger
Method Reorient-Pen Relocate Avg Reach-Cube Move-Cube Avg

ResNet sr 65.33 66.67 66.00 87.12 56.06 71.59

ResNet+IB sr 69.33 74.67 72.00 87.14 57.45 72.30
β 5e-3 1e-4 − 5e-3 5e-3 −

ViT sr 61.33 9.33 35.33 78.77 32.37 55.57

ViT+IB sr 64.00 10.67 37.33 77.83 34.04 55.93
β 5e-3 5e-3 − 5e-3 5e-3 −

R3M sr 45.33 5.33 25.33 74.29 45.45 59.87

R3M+IB sr 52.00 2.67 27.33 75.04 46.23 60.63
β 5e-3 5e-3 − 5e-3 5e-3 −

Voltron sr 32.00 5.33 18.67 86.37 62.04 74.21

Voltron+IB sr 38.67 4.00 21.33 86.62 63.61 75.12
β 5e-3 5e-3 − 5e-3 5e-3 −

VC-1 sr 38.67 10.67 24.67 84.19 59.90 72.05

VC-1+IB sr 37.33 14.67 26.00 84.69 62.91 73.80
β 1e-3 1e-3 − 5e-3 5e-3 −

MPI sr 60.00 9.33 34.67 79.69 44.13 61.91

MPI+IB sr 61.33 12.00 36.67 79.91 46.78 63.34
β 1e-4 1e-4 − 5e-3 5e-3 −

Table 7: Task-wise Performance on DMControl of CortexBench. We evaluated 5 tasks using 3 random seeds and reported
the average success rate (sr) and Lagrange multiplier β. The best performance is highlighted in bold.

Method Cheetah-Run Finger-Spin Reacher-Easy Walker-Stand Walker-Walk Avg

ResNet sr 38.32 88.37 92.20 91.42 64.34 74.93

ResNet+IB sr 50.75 90.42 99.78 96.39 87.37 84.94
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

ViT sr 7.22 3.39 18.97 18.05 4.43 10.41

ViT+IB sr 4.27 12.34 24.11 17.45 4.46 12.53
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

R3M sr 17.01 65.31 53.73 49.25 16.27 40.31

R3M+IB sr 16.19 72.10 57.34 46.48 16.60 41.74
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

Voltron sr 1.65 8.56 44.06 46.27 26.19 25.35

Voltron+IB sr 6.93 23.85 35.89 56.48 42.68 33.16
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

VC-1 sr 20.02 85.35 74.01 64.65 25.07 53.82

VC-1+IB sr 21.52 80.91 74.80 67.10 30.34 54.93
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

MPI sr 38.76 88.43 75.87 68.92 25.27 59.45

MPI+IB sr 33.82 86.44 86.99 69.29 30.50 61.41
β 1e-3 1e-3 1e-3 1e-3 1e-3 −
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Table 8: Task-wise Performance on Meta-World of CortexBench. We evaluated 5 tasks using 3 random seeds and reported
the average success rate (sr) and Lagrange multiplier β. The best performance is highlighted in bold.

Method Assembly Bin-Picking Button-Press Drawer-Open Hammer Avg

ResNet sr 40.00 74.67 94.67 100.00 96.00 81.07

ResNet+IB sr 49.33 76.00 94.67 100.00 96.00 83.20
β 1e-4 1e-3 1e-3 1e-3 1e-4 −

ViT sr 13.33 13.33 21.33 37.33 73.33 31.73

ViT+IB sr 13.33 9.33 18.67 62.67 76.00 36.00
β 1e-4 1e-4 1e-4 1e-4 1e-4 −

R3M sr 42.67 56.00 38.67 66.67 61.33 53.07

R3M+IB sr 38.67 53.33 38.67 68.00 72.00 54.13
β 1e-3 1e-3 1e-4 1e-4 1e-3 −

Voltron sr 60.00 58.67 68.00 82.67 93.33 72.53

Voltron+IB sr 57.33 74.67 54.67 93.33 92.00 74.40
β 1e-4 1e-4 1e-4 1e-4 1e-4 −

VC-1 sr 68.00 60.00 65.33 100.00 94.67 77.60

VC-1+IB sr 70.67 76.00 69.33 100.00 96.00 82.40
β 5e-3 5e-3 5e-3 5e-3 5e-3 −

MPI sr 61.33 40.00 58.67 100.00 72.00 66.40

MPI+IB sr 61.33 53.33 58.67 100.00 73.33 69.33
β 1e-3 1e-3 1e-3 1e-3 1e-3 −

Table 9: Performance on language-condition multi-task benchmark LIBERO. We evaluated 40 tasks of 4 suites using 3
random seeds and reported the average success rate (sr) and Lagrange multiplier β. The best performance is bolded.

Method LIBERO-Goal LIBERO-Object LIBERO-Spatial LIBERO-10 Avg

BC-MLP sr 16.50 19.00 29.33 2.33 16.79

BC-MLP+IB sr 27.67 31.50 41.00 2.67 25.71
β 1e-4 1e-4 1e-4 1e-4 -

BC-RNN sr 15.17 13.33 30.67 2.33 15.38

BC-RNN+IB sr 26.00 17.67 35.17 3.00 20.46
β 5e-3 5e-3 5e-3 5e-3 -

BC-Transfomer sr 67.83 41.83 68.00 15.83 48.37

BC-Transfomer+IB sr 74.17 45.67 72.50 18.00 52.59
β 1e-3 1e-4 1e-3 1e-4 -

BC-VILT sr 76.17 43.00 67.17 6.50 48.21

BC+VILT+IB sr 83.83 52.00 70.67 8.67 53.79
β 5e-3 5e-3 1e-3 1e-4 -

18



Method Pick the pink cup Put the pink cup into a bowl
BC

BC+IB
5/10
9/10

3/10
6/10

Base 
Camera

Time Task: Put the pink cup into a bowl

Table 10: Real robot results.

Figure 10: Real-world robot experiments conducted on a table setup involving two tasks. The left figure illustrates the
experimental setup. The top right figure presents an example of the predicted particle trajectories alongside the policy
execution. The bottom right figure provides the quantitative results,

C.2. Real-world Experiments

As shown in Figure 10, our real-world experiments involve a 6-DOF UR5 arm equipped with a Robotiq 2F-85 gripper and a
RealSense L515 camera (base camera) for RGB image capture. We designed two simple tabletop manipulation tasks with
manipulation skills:

• Pick. The robot grips the pink cup on the table and lifts it up in the sky.

• Pick and Place. The robot grips the pink cup on the table and places it in the bowl.

The demonstrations used for training both BC and BC+IB policies are collected using a 3D mouse, with 25 demonstrations
recorded for pick tasks and 50 for more challenging pick-and-place tasks, utilizing only the base camera. We adopt
VC-1 (Majumdar et al., 2023) as the baseline BC method, where pre-trained representations remain frozen during policy
training, maintaining consistency with the simulation setup. To ensure a fair comparison, all methods are evaluated under
identical initial conditions for each task.

Figure 11: Comparison of the success rates of BC-VILT+IB
trained with 10 demonstrations against the vanilla BC-VILT
across four LIBERO suites.

The real-world robot experiments demonstrate that incor-
porating IB into BC significantly enhances task success
rates. As shown in Table 10, BC+IB achieves a 9/10 suc-
cess rate for picking the pink cup, compared to 5/10 for
standard BC. Similarly, in the more complex task of plac-
ing the pink cup into the bowl, BC+IB outperforms BC
with a success rate of 6/10 versus 3/10. This indicates that
reducing redundancy in latent representations improves
both grasping stability and overall task execution.

C.3. Extention to Few-shot Setting

We further evaluate the effectiveness of IB in a few-shot
setting by conducting experiments with BC-VILT across
multiple suites in LIBERO, as illustrated in Figure 11.
The model is trained with only 10 demonstrations. The re-
sults consistently show that incorporating the IB improves
success rates across all LIBERO suites, highlighting its
efficacy in few-shot learning scenarios.
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C.4. Experiments on LIBERO-Object of LIBERO

We observe that in the LIBERO-Object suite, the success rate does not consistently improve with an increasing number of
demonstrations. Specifically, in the 10-shot setting, BC-VILT achieves a success rate of 56.17%, but in the full-shot setting,
its performance drops to 43.00%. We hypothesize that this decline stems from inherent data distribution characteristics
within the benchmark. In particular, we suspect that task-level imbalance in the dataset may contribute to overfitting.
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